دانلود مقاله ISI انگلیسی شماره 111006
ترجمه فارسی عنوان مقاله

تجزیه و تحلیل حساسیت جهانی چند متغیره برای مدل های پویا بر اساس تجزیه و تحلیل ویولت

عنوان انگلیسی
Multivariate global sensitivity analysis for dynamic models based on wavelet analysis
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
111006 2018 34 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Reliability Engineering & System Safety, Volume 170, February 2018, Pages 20-30

ترجمه کلمات کلیدی
تجزیه و تحلیل حساسیت جهانی، مدل پویا توزیع انرژی، تحلیل ویولت،
کلمات کلیدی انگلیسی
Global sensitivity analysis; Dynamic model; Energy distribution; Wavelet analysis;
پیش نمایش مقاله
پیش نمایش مقاله  تجزیه و تحلیل حساسیت جهانی چند متغیره برای مدل های پویا بر اساس تجزیه و تحلیل ویولت

چکیده انگلیسی

Dynamic models with time-dependent output are widely used in engineering for risk assessment and decision making. Global sensitivity analysis for these models is very useful for simplifying the model, improving the model performance, etc. The existent covariance decomposition based global sensitivity analysis method combines the variance based sensitivity analysis results of the model output at all the instants, which just utilizes the information of the time-dependent output in time domain. However, many significant features of time-dependent output may not be obtained from the time domain. Thus, performing global sensitivity analysis for dynamic models just with the information in time domain may be incomplete. In this paper, a new kind of sensitivity indices based on wavelet analysis is proposed. The energy distribution of model output over different frequency bands is extracted as a quantitative feature of the time-dependent output, and it contains the information of model output in both time and frequency domains. Then, a vector projection method is utilized to measure the effects of input variables on the energy distribution of model output. An efficient algorithm is also proposed to estimate the new sensitivity indices. The numerical examples show the difference between the new sensitivity indices and the covariance decomposition based sensitivity indices. Finally, the new sensitivity indices are applied to an environmental model to tell the relative importance of the input variables, which can be useful for improving the model performance.