دانلود مقاله ISI انگلیسی شماره 111014
ترجمه فارسی عنوان مقاله

تجزیه و تحلیل حساسیت در مدل های احتمالات چند خطی

عنوان انگلیسی
Sensitivity analysis in multilinear probabilistic models
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
111014 2017 14 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Information Sciences, Volume 411, October 2017, Pages 84-97

پیش نمایش مقاله
پیش نمایش مقاله  تجزیه و تحلیل حساسیت در مدل های احتمالات چند خطی

چکیده انگلیسی

Sensitivity methods for the analysis of the outputs of discrete Bayesian networks have been extensively studied and implemented in different software packages. These methods usually focus on the study of sensitivity functions and on the impact of a parameter change to the Chan–Darwiche distance. Although not fully recognized, the majority of these results rely heavily on the multilinear structure of atomic probabilities in terms of the conditional probability parameters associated with this type of network. By defining a statistical model through the polynomial expression of its associated defining conditional probabilities, we develop here a unifying approach to sensitivity methods applicable to a large suite of models including extensions of Bayesian networks, for instance context-specific ones. Our algebraic approach enables us to prove that for models whose defining polynomial is multilinear both the Chan–Darwiche distance and any divergence in the family of ϕ-divergences are minimized for a certain class of multi-parameter contemporaneous variations when parameters are proportionally covaried.