دانلود مقاله ISI انگلیسی شماره 111052
ترجمه فارسی عنوان مقاله

پراکندگی مقادیر اهمیت نسبی به عدم قطعیت رتبه بندی کمک می کند: تجزیه و تحلیل حساسیت روش های تصمیم گیری چند معیاره

عنوان انگلیسی
Dispersion of relative importance values contributes to the ranking uncertainty: Sensitivity analysis of Multiple Criteria Decision-Making methods
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
111052 2018 30 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Soft Computing, Volume 67, June 2018, Pages 286-298

ترجمه کلمات کلیدی
تجزیه و تحلیل معیارها، تجزیه و تحلیل میزان حساسیت، نیرومندی، پراکندگی داده، مقرون به صرفه بودن مسکن،
کلمات کلیدی انگلیسی
Multiple criteria analysis; Sensitivity analysis; Robustness; Data dispersion; Housing affordability;
پیش نمایش مقاله
پیش نمایش مقاله  پراکندگی مقادیر اهمیت نسبی به عدم قطعیت رتبه بندی کمک می کند: تجزیه و تحلیل حساسیت روش های تصمیم گیری چند معیاره

چکیده انگلیسی

Multiple Criteria Decision-Making (MCDM) methods are widely used in research and industrial applications. These methods rely heavily on expert perceptions and are often sensitive to the assumptions made. The reliability and robustness of MCDM analysis can be further tested and verified by a computer simulation and sensitivity analysis. In order to address this, five different MCDM approaches, including Weighted Sum Model (WSM), Weighted Product Model (WPM), revised Analytic Hierarchy Process (rAHP), Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) and COmplex PRoportional ASsessment (COPRAS) are explored in the paper. Real data of the case study for assessing housing affordability are used for testing the robustness of alternative ranking and finding the most sensitive criteria to the change of criterion weight. We identify the most critical criteria for any and best ranking alternatives. The paper highlights the significance of sensitivity analysis in assessing the robustness and reliability of MCDM outcomes. Furthermore, randomly generated and model-based data sets are used to establish relationship between the dispersion of relative importance values of alternatives and ranking uncertainty. Our findings demonstrate that the dispersion of relative importance values of alternatives correlate with the Euclidian distances of aggregated values. We conclude that the dispersion of relative importance values contributes directly to the ranking uncertainty and can be used as a measure for identifying critical criteria.