دانلود مقاله ISI انگلیسی شماره 111677
ترجمه فارسی عنوان مقاله

بهینه سازی توپولوژی ساختارهای باینری با استفاده از برنامه نویسی خطی صحیح

عنوان انگلیسی
Topology optimization of binary structures using Integer Linear Programming
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
111677 2018 13 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Finite Elements in Analysis and Design, Volume 139, February 2018, Pages 49-61

ترجمه کلمات کلیدی
بهینه سازی توپولوژی، برنامه ریزی خطی عدد صحیح آرامش فیلتر کردن خطای تقسیم، انطباق، محدودیت جابجایی،
کلمات کلیدی انگلیسی
Topology optimization; Integer Linear Programming; Relaxation; Filter; Truncation error; Compliance; Displacement constraint;
پیش نمایش مقاله
پیش نمایش مقاله  بهینه سازی توپولوژی ساختارهای باینری با استفاده از برنامه نویسی خطی صحیح

چکیده انگلیسی

This work proposes an improved method for gradient-based topology optimization in a discrete setting of design variables. The method combines the features of BESO developed by Huang and Xie [1] and the discrete topology optimization method of Svanberg and Werme [2] to improve the effectiveness of binary variable optimization. Herein the objective and constraint functions are sequentially linearized using Taylor's first order approximation, similarly as carried out in [2]. Integer Linear Programming (ILP) is used to compute globally optimal solutions for these linear optimization problems, allowing the method to accommodate any type of constraints explicitly, without the need for any Lagrange multipliers or thresholds for sensitivities (like the modern BESO [1]), or heuristics (like the early ESO/BESO methods [3]). In the linearized problems, the constraint targets are relaxed so as to allow only small changes in topology during an update and to ensure the existence of feasible solutions for the ILP. This process of relaxing the constraints and updating the design variables by using ILP is repeated until convergence. The proposed method does not require any gradual refinement of mesh, unlike in [2] and the sensitivities every iteration are smoothened by using the mesh-independent BESO filter. Few examples of compliance minimization are shown to demonstrate that mathematical programming yields similar results as that of BESO for volume-constrained problems. Some examples of volume minimization subject to a compliance constraint are presented to demonstrate the effectiveness of the method in dealing with a non-volume constraint. Volume minimization with a compliance constraint in the case of design-dependent fluid pressure loading is also presented using the proposed method. An example is presented to show the effectiveness of the method in dealing with displacement constraints. The results signify that the method can be used for topology optimization problems involving non-volume constraints without the use of heuristics, Lagrange multipliers and hierarchical mesh refinement.