دانلود مقاله ISI انگلیسی شماره 111681
ترجمه فارسی عنوان مقاله

یک الگوریتم مبتنی بر برنامه نویسی خطی برای حل یک کلاس از مشکلات بهینه سازی با یک تابع هدف چند لاین و محدودیت های وابسته است

عنوان انگلیسی
A linear programming based algorithm to solve a class of optimization problems with a multi-linear objective function and affine constraints
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
111681 2018 29 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computers & Operations Research, Volume 89, January 2018, Pages 17-30

ترجمه کلمات کلیدی
راه حل های مطلوب پارتو، برنامه ریزی محدب تابع هدف چند لاین، برنامه ریزی خطی، الگوریتم زمان چندجملهای،
کلمات کلیدی انگلیسی
Pareto optimal solutions; Convex programming; Multi-linear objective function; Linear programming; Polynomial-time algorithm;
پیش نمایش مقاله
پیش نمایش مقاله  یک الگوریتم مبتنی بر برنامه نویسی خطی برای حل یک کلاس از مشکلات بهینه سازی با یک تابع هدف چند لاین و محدودیت های وابسته است

چکیده انگلیسی

We present a linear programming based algorithm for a class of optimization problems with a multi-linear objective function and affine constraints. This class of optimization problems has only one objective function, but it can also be viewed as a class of multi-objective optimization problems by decomposing its objective function. The proposed algorithm exploits this idea and solves this class of optimization problems from the viewpoint of multi-objective optimization. The algorithm computes an optimal solution when the number of variables in the multi-linear objective function is two, and an approximate solution when the number of variables is greater than two. A computational study demonstrates that when available computing time is limited the algorithm significantly outperforms well-known convex programming solvers IPOPT and CVXOPT, in terms of both efficiency and solution quality. The optimization problems in this class can be reformulated as second-order cone programs, and, therefore, also be solved by second-order cone programming solvers. This is highly effective for small and medium size instances, but we demonstrate that for large size instances with two variables in the multi-linear objective function the proposed algorithm outperforms a (commercial) second-order cone programming solver.