دانلود مقاله ISI انگلیسی شماره 111731
ترجمه فارسی عنوان مقاله

اثرات متغیرهای باینری در تعهد واحد مبتنی بر برنامه نویسی خطی مختلط در بازارهای برق بزرگ مقیاس

عنوان انگلیسی
Effects of binary variables in mixed integer linear programming based unit commitment in large-scale electricity markets
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
111731 2018 10 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Electric Power Systems Research, Volume 160, July 2018, Pages 429-438

ترجمه کلمات کلیدی
آرام سازی متغیرهای دودویی، شعبه و الگوریتم برش، پاکسازی بازار برق روز بعد، برنامه ریزی خطی زنجیره ای مختلط، تعهد واحد،
کلمات کلیدی انگلیسی
Binary variables relaxation; Branch and cut algorithm; Day-ahead electricity market clearing; Mixed integer linear programming; Unit commitment;
پیش نمایش مقاله
پیش نمایش مقاله  اثرات متغیرهای باینری در تعهد واحد مبتنی بر برنامه نویسی خطی مختلط در بازارهای برق بزرگ مقیاس

چکیده انگلیسی

Mixed integer linear programming is one of the main approaches used to solve unit commitment problems. Due to the computational complexity of unit commitment problems, several researches remark the benefits of using less binary variables or relaxing them for the branch-and-cut algorithm. However, integrality constraints relaxation seems to be case dependent because there are many instances where applying it may not improve the computational burden. In addition, there is a lack of extensive numerical experiments evaluating the effects of the relaxation of binary variables in mixed integer linear programming based unit commitment. Therefore, the primary purpose of this work is to analyze the effects of binary variables and compare different relaxations, supported by extensive computational experiments. To accomplish this objective, two power systems are used for the numerical tests: the IEEE118 test system and a very large scale real system. The results suggest that a direct link between the relaxation of binary variables and computational burden cannot be easily assured in the general case. Therefore, relaxing binary variables should not be used as a general rule-of-practice to improve computational burden, at least, until each particular model is tested under different load scenarios and formulations to quantify the final effects of binary variables on the specific UC implementation. The secondary aim of this work is to give some preliminary insight into the reasons that could be supporting the binary relaxation in some UC instances.