دانلود مقاله ISI انگلیسی شماره 25193
ترجمه فارسی عنوان مقاله

حداکثر برنامه ریزی خطی احتمال همجوشی داده برای شناسایی اسپیکر

عنوان انگلیسی
Maximum likelihood linear programming data fusion for speaker recognition
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
25193 2014 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Speech Communication, Volume 51, Issue 9, September 2009, Pages 820–830

ترجمه کلمات کلیدی
شناسایی اسپیکر - همجوشی داده ها - حداکثر احتمال - برنامه ریزی خطی - ساده
کلمات کلیدی انگلیسی
Speaker recognition, Data fusion, GMM, Maximum likelihood, Linear programming, Simplex,
پیش نمایش مقاله
پیش نمایش مقاله   حداکثر برنامه ریزی خطی احتمال همجوشی داده برای شناسایی اسپیکر

چکیده انگلیسی

Biometric system performance can be improved by means of data fusion. Several kinds of information can be fused in order to obtain a more accurate classification (identification or verification) of an input sample. In this paper we present a method for computing the weights in a weighted sum fusion for score combinations, by means of a likelihood model. The maximum likelihood estimation is set as a linear programming problem. The scores are derived from a GMM classifier working on different feature extraction techniques. Our experimental results assessed the robustness of the system in front changes on time (different sessions) and robustness in front of changes of microphone. The improvements obtained were significantly better (error bars of two standard deviations) than a uniform weighted sum or a uniform weighted product or the best single classifier. The proposed method scales computationally with the number of scores to be fusioned as the simplex method for linear programming.