دانلود مقاله ISI انگلیسی شماره 25324
ترجمه فارسی عنوان مقاله

یک الگوریتم مبتنی بر برنامه ریزی خطی برای جداسازی امضا شده (غیر صاف) بدن محدب

عنوان انگلیسی
A linear programming-based algorithm for the signed separation of (non-smooth) convex bodies
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
25324 2012 9 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computer Methods in Applied Mechanics and Engineering, Volumes 233–236, 1 August 2012, Pages 49–67

ترجمه کلمات کلیدی
تماس - دینامیک لاگرانژی - برنامه ریزی خطی - تجزیه و تحلیل غیر صاف -
کلمات کلیدی انگلیسی
Contact, Lagrangian dynamics, Linear programming, Non-smooth analysis,
پیش نمایش مقاله
پیش نمایش مقاله  یک الگوریتم مبتنی بر برنامه ریزی خطی برای جداسازی امضا شده (غیر صاف) بدن محدب

چکیده انگلیسی

A subdifferentiable global contact detection algorithm, the Supporting Separating Hyperplane (SSH) algorithm, based on the signed distance between supporting hyperplanes of two convex sets is developed. It is shown that for polyhedral sets, the SSH algorithm may be evaluated as a linear program, and that this linear program is always feasible and always subdifferentiable with respect to the configuration variables, which define the constraint matrix. This is true regardless of whether the program is primal degenerate, dual degenerate, or both. The subgradient of the SSH linear program always lies in the normal cone of the closest admissible configuration to an inadmissible contact configuration. In particular if a contact surface exists, the subgradient of the SSH linear program is orthogonal to the contact surface, as required of contact reactions. This property of the algorithm is particularly important in modeling stiff systems, rigid bodies, and tightly packed or jammed systems.

مقدمه انگلیسی

The objective of this paper is to develop a contact detection algorithm and contact potential for non-smooth convex bodies. The proposed contact detection algorithm can be concisely described as a supporting separating hyperplane (SSH) test for interpenetration, and is based on standard separation theorems for compact convex sets. We develop this test in detail for polyhedral sets, where the SSH test can be effectively reformulated as a linear programming problem–the SSH LP. We further show that the subgradient of the SSH LP can be readily evaluated and that it supplies the force system at the time of contact.