دانلود مقاله ISI انگلیسی شماره 25901
ترجمه فارسی عنوان مقاله

تجزیه و تحلیل حساسیت برای اجزاء تغییرات یکنواخت به شدت تعمیم یافته بر اساس (A، η) (A، η)، روش اپراتور حل شده

عنوان انگلیسی
Sensitivity analysis for generalized strongly monotone variational inclusions based on the (A,η)(A,η)-resolvent operator technique
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
25901 2006 5 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Mathematics Letters, Volume 19, Issue 12, December 2006, Pages 1409–1413

ترجمه کلمات کلیدی
( - η)( - η)تجزیه و تحلیل حساسیت - حداکثر نقشه برداری یکنواخت آرام - ( - η) ( - η) نقشه برداری - نواخت - روش اپراتور حل عمومی -
کلمات کلیدی انگلیسی
Sensitivity analysis, Quasivariational inclusions, Maximal relaxed monotone mapping, (A,η)(A,η)-monotone mapping, Generalized resolvent operator technique,
پیش نمایش مقاله
پیش نمایش مقاله  تجزیه و تحلیل حساسیت برای اجزاء تغییرات یکنواخت به شدت تعمیم یافته بر اساس (A، η) (A، η)،  روش اپراتور حل شده

چکیده انگلیسی

Sensitivity analysis for generalized strongly monotone variational inclusions based on the (A,η)(A,η)-resolvent operator technique is investigated. The results obtained encompass a broad range of results.

مقدمه انگلیسی

Recently in [1] the author investigated sensitivity analysis for quasivariational inclusions using the resolvent operator technique. Resolvent operator techniques have been applied to a broad range of problems arising from several fields of research, especially from model equilibria problems in economics, optimization and control theory, operations research, transportation network modeling, and mathematical programming. In this work we present the sensitivity analysis for (A,η)(A,η)-monotone quasivariational inclusions based on the generalized (A,η)(A,η)-resolvent operator technique. The notion of (A,η)(A,η)-monotone mappings upgrades the notion of AA-monotonicity [2], which generalizes the well-known class of maximal monotone mappings to maximal relaxed monotone mappings. The results obtained generalize a wide range of results on the sensitivity analysis for quasivariational inclusions [3], [4], [5] and [6] and others. For more details, we recommend [1], [2], [3], [4], [5], [6], [7] and [8].