دانلود مقاله ISI انگلیسی شماره 46525
ترجمه فارسی عنوان مقاله

TOPSIS وزنی اصلاح شده برای شناسایی گره های با نفوذ در شبکه های پیچیده

عنوان انگلیسی
A modified weighted TOPSIS to identify influential nodes in complex networks
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
46525 2016 13 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Physica A: Statistical Mechanics and its Applications, Volume 444, 15 February 2016, Pages 73–85

ترجمه کلمات کلیدی
شبکه های پیچیده - گره نفوذ - TOPSIS با وزن - سنجش مرکزیت - مدل SIR
کلمات کلیدی انگلیسی
Complex networks; Influential nodes; Weighted TOPSIS; Centrality measures; SIR model
پیش نمایش مقاله
پیش نمایش مقاله  TOPSIS وزنی اصلاح شده برای شناسایی گره های با نفوذ در شبکه های پیچیده

چکیده انگلیسی

Identifying influential nodes in complex networks is still an open issue. Although various centrality measures have been proposed to address this problem, such as degree, betweenness, and closeness centralities, they all have some limitations. Recently, technique for order performance by similarity to ideal solution (TOPSIS), as a tradeoff between the existing metrics, has been proposed to rank nodes effectively and efficiently. It regards the centrality measures as the multi-attribute of the complex network and connects the multi-attribute to synthesize the evaluation of node importance of each node. However, each attribute plays an equally important part in this method, which is not reasonable. In this paper, we improve the method to ranking the node’s spreading ability. A new method, named as weighted technique for order performance by similarity to ideal solution (weighted TOPSIS) is proposed. In our method, we not only consider different centrality measures as the multi-attribute to the network, but also propose a new algorithm to calculate the weight of each attribute. To evaluate the performance of our method, we use the Susceptible–Infected–Recovered (SIR) model to do the simulation on four real networks. The experiments on four real networks show that the proposed method can rank the spreading ability of nodes more accurately than the original method.