دانلود مقاله ISI انگلیسی شماره 46601
ترجمه فارسی عنوان مقاله

استفاده از روش شبه تصادفی برای پیش بینی و ارزیابی اهمیت متغیر در رگرسیون خطی

عنوان انگلیسی
Using random subspace method for prediction and variable importance assessment in linear regression
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
46601 2014 18 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computational Statistics & Data Analysis, Volume 71, March 2014, Pages 725–742

ترجمه کلمات کلیدی
روش شبه تصادفی - انتخاب مدل با ابعاد بالا - پیش بینی - اهمیت متغیر - نرخ انتخاب مثبت - نرخ کشف کاذب
کلمات کلیدی انگلیسی
Random subspace method; High-dimensional model selection; Prediction; Variable importance; Positive selection rate; False discovery rate
پیش نمایش مقاله
پیش نمایش مقاله  استفاده از روش شبه تصادفی برای پیش بینی و ارزیابی اهمیت متغیر در رگرسیون خطی

چکیده انگلیسی

A random subset method (RSM) with a new weighting scheme is proposed and investigated for linear regression with a large number of features. Weights of variables are defined as averages of squared values of pertaining t-statistics over fitted models with randomly chosen features. It is argued that such weighting is advisable as it incorporates two factors: a measure of importance of the variable within the considered model and a measure of goodness-of-fit of the model itself. Asymptotic weights assigned by such a scheme are determined as well as assumptions under which the method leads to consistent choice of significant variables in the model. Numerical experiments indicate that the proposed method behaves promisingly when its prediction errors are compared with errors of penalty-based methods such as the lasso and it has much smaller false discovery rate than the other methods considered.