دانلود مقاله ISI انگلیسی شماره 46602
ترجمه فارسی عنوان مقاله

مدل های رگرسیون خطی محلی مبتنی بر الگو برای پیش بینی بار کوتاه مدت

عنوان انگلیسی
Pattern-based local linear regression models for short-term load forecasting
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
46602 2016 9 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Electric Power Systems Research, Volume 130, January 2016, Pages 139–147

ترجمه کلمات کلیدی
رگرسیون خطی - رگرسیون حداقل مربعات جزئی - الگوهای چرخه فصلی - پیش بینی بار کوتاه مدت - سری زمانی
کلمات کلیدی انگلیسی
Linear regression; Partial least-squares regression; Patterns of seasonal cycles; Short-term load forecasting; Time series
پیش نمایش مقاله
پیش نمایش مقاله  مدل های رگرسیون خطی محلی مبتنی بر الگو برای پیش بینی بار کوتاه مدت

چکیده انگلیسی

In this paper univariate models for short-term load forecasting based on linear regression and patterns of daily cycles of load time series are proposed. The patterns used as input and output variables simplify the forecasting problem by filtering out the trend and seasonal variations of periods longer than the daily one. The nonstationarity in mean and variance is also eliminated. The simplified relationship between variables (patterns) is modeled locally in the neighborhood of the current input using linear regression. The load forecast is constructed from the forecasted output pattern and the current values of variables describing the load time series. The proposed stepwise and lasso regressions reduce the number of predictors to a few. In the principal components regression and partial least-squares regression only one predictor is used. This allows us to visualize the data and regression function. The performances of the proposed methods were compared with that of other models based on ARIMA, exponential smoothing, neural networks and Nadaraya–Watson estimator. Application examples confirm valuable properties of the proposed approaches and their high accuracy.