دانلود مقاله ISI انگلیسی شماره 46613
ترجمه فارسی عنوان مقاله

یادگیری افزایشی برای رگرسیون برداری پشتیبانی νν

عنوان انگلیسی
Incremental learning for νν-Support Vector Regression
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
46613 2015 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Neural Networks, Volume 67, July 2015, Pages 140–150

ترجمه کلمات کلیدی
یادگیری افزایشی؛ آموزش آنلاین - رگرسیون بردار νν پشتیبانی؛ ماشین بردار پشتیبان
کلمات کلیدی انگلیسی
Incremental learning; Online learning; νν-Support Vector Regression; Support vector machine
پیش نمایش مقاله
پیش نمایش مقاله  یادگیری افزایشی برای رگرسیون برداری پشتیبانی νν

چکیده انگلیسی

The νν-Support Vector Regression (νν-SVR) is an effective regression learning algorithm, which has the advantage of using a parameter νν on controlling the number of support vectors and adjusting the width of the tube automatically. However, compared to νν-Support Vector Classification (νν-SVC) (Schölkopf et al., 2000), νν-SVR introduces an additional linear term into its objective function. Thus, directly applying the accurate on-line νν-SVC algorithm (AONSVM) to νν-SVR will not generate an effective initial solution. It is the main challenge to design an incremental νν-SVR learning algorithm. To overcome this challenge, we propose a special procedure called initial adjustments   in this paper. This procedure adjusts the weights of νν-SVC based on the Karush–Kuhn–Tucker (KKT) conditions to prepare an initial solution for the incremental learning. Combining the initial adjustments   with the two steps of AONSVM produces an exact and effective incremental νν-SVR learning algorithm (INSVR). Theoretical analysis has proven the existence of the three key inverse matrices, which are the cornerstones of the three steps of INSVR (including the initial adjustments  ), respectively. The experiments on benchmark datasets demonstrate that INSVR can avoid the infeasible updating paths as far as possible, and successfully converges to the optimal solution. The results also show that INSVR is faster than batch νν-SVR algorithms with both cold and warm starts.