دانلود مقاله ISI انگلیسی شماره 46614
ترجمه فارسی عنوان مقاله

مطالعات محدود شبکه رگرسیون خطی تطبیقی و کاربرد آن

عنوان انگلیسی
Studies of the adaptive network-constrained linear regression and its application
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
46614 2015 13 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computational Statistics & Data Analysis, Volume 92, December 2015, Pages 40–52

ترجمه کلمات کلیدی
مجازات شبکه تطبیقی - انتخاب متغیر - / نسبت
کلمات کلیدی انگلیسی
Adaptive network penalty; Variable selections; P/E ratio
پیش نمایش مقاله
پیش نمایش مقاله  مطالعات محدود شبکه رگرسیون خطی تطبیقی و کاربرد آن

چکیده انگلیسی

The network-constrained criterion is one of the fundamental variable selection models for high-dimensional data with correlated features. It is distinguished from others in that it can select features and simultaneously encourage global smoothness of the coefficients over the network via penalizing the weighted sum of squares of the scaled difference of the coefficients between neighbor vertices. However, because more features were selected while it was applied for the process of analysis of the “China Stock Market Financial Database—Financial Ratios”, the so-called adaptive network-constrained criterion was proposed to tackle the problem via assigning various weights to the lasso penalty. Similar to the adaptive lasso, the proposed model enjoys consistency in variable selection if the weights have been given correctly in advance. The simulations show that the proposed model performed better than the other variable selection techniques mentioned in the paper with regards to model fitting; meanwhile, it selected fewer features than the network-constrained criterion. Furthermore, the mean value of the cross-validation likelihood and the number of selected features are tested to be accurate enough for practical applications.