دانلود مقاله ISI انگلیسی شماره 46647
ترجمه فارسی عنوان مقاله

مدل سازی مقاومت فشاری بتن های بازیافتی توسط شبکه عصبی مصنوعی، مدل درختی و رگرسیون غیرخطی

عنوان انگلیسی
Modeling compressive strength of recycled aggregate concrete by Artificial Neural Network, Model Tree and Non-linear Regression
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
46647 2014 12 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : International Journal of Sustainable Built Environment, Volume 3, Issue 2, December 2014, Pages 187–198

ترجمه کلمات کلیدی
دانه های بازیافتی - بازیافت بتن - شبکه عصبی مصنوعی - مدل درختی - رگرسیون غیر خطی
کلمات کلیدی انگلیسی
Recycled aggregates; Recycled aggregate concrete; Artificial Neural Network; Model Tree; Non-linear Regression
پیش نمایش مقاله
پیش نمایش مقاله  مدل سازی مقاومت فشاری بتن های بازیافتی توسط شبکه عصبی مصنوعی، مدل درختی و رگرسیون غیرخطی

چکیده انگلیسی

In the recent past Artificial Neural Networks (ANN) have emerged out as a promising technique for predicting compressive strength of concrete. In the present study back propagation was used to predict the 28 day compressive strength of recycled aggregate concrete (RAC) along with two other data driven techniques namely Model Tree (MT) and Non-linear Regression (NLR). Recycled aggregate is the current need of the hour owing to its environmental friendly aspect of re-use of the construction waste. The study observed that, prediction of 28 day compressive strength of RAC was done better by ANN than NLR and MT. The input parameters were cubic meter proportions of Cement, Natural fine aggregate, Natural coarse Aggregates, recycled aggregates, Admixture and Water (also called as raw data). The study also concluded that ANN performs better when non-dimensional parameters like Sand–Aggregate ratio, Water–total materials ratio, Aggregate–Cement ratio, Water–Cement ratio and Replacement ratio of natural aggregates by recycled aggregates, were used as additional input parameters. Study of each network developed using raw data and each non dimensional parameter facilitated in studying the impact of each parameter on the performance of the models developed using ANN, MT and NLR as well as performance of the ANN models developed with limited number of inputs. The results indicate that ANN learn from the examples and grasp the fundamental domain rules governing strength of concrete.