دانلود مقاله ISI انگلیسی شماره 73066
ترجمه فارسی عنوان مقاله

طبقهبندی پیشبینی اختلال دوقطبی کودکان با استفاده از ماشینهای بردار تصویربرداری با وزن متعارف مبتنی بر اتلتیک

عنوان انگلیسی
Predictive classification of pediatric bipolar disorder using atlas-based diffusion weighted imaging and support vector machines
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
73066 2015 7 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Psychiatry Research: Neuroimaging, Volume 234, Issue 2, 30 November 2015, Pages 265–271

ترجمه کلمات کلیدی
اختلال دوقطبی اطفال، تصویربرداری با وزن زیاد ماشین آلات بردار پشتیبانی، فراگیری ماشین، طبقه بندی الگو
کلمات کلیدی انگلیسی
Pediatric bipolar disorder; Diffusion weighted imaging; Support vector machines; Machine learning; Pattern classification

چکیده انگلیسی

Previous studies have reported abnormalities of white-matter diffusivity in pediatric bipolar disorder. However, it has not been established whether these abnormalities are able to distinguish individual subjects with pediatric bipolar disorder from healthy controls with a high specificity and sensitivity. Diffusion-weighted imaging scans were acquired from 16 youths diagnosed with DSM-IV bipolar disorder and 16 demographically matched healthy controls. Regional white matter tissue microstructural measurements such as fractional anisotropy, axial diffusivity and radial diffusivity were computed using an atlas-based approach. These measurements were used to ‘train’ a support vector machine (SVM) algorithm to predict new or ‘unseen’ subjects’ diagnostic labels. The SVM algorithm predicted individual subjects with specificity=87.5%, sensitivity=68.75%, accuracy=78.12%, positive predictive value=84.62%, negative predictive value=73.68%, area under receiver operating characteristic curve (AUROC)=0.7812 and chi-square p-value=0.0012. A pattern of reduced regional white matter fractional anisotropy was observed in pediatric bipolar disorder patients. These results suggest that atlas-based diffusion weighted imaging measurements can distinguish individual pediatric bipolar disorder patients from healthy controls. Notably, from a clinical perspective these findings will contribute to the pathophysiological understanding of pediatric bipolar disorder.