دانلود مقاله ISI انگلیسی شماره 82556
ترجمه فارسی عنوان مقاله

فازی ترین بدترین روش تصمیم گیری چند معیاره و برنامه های کاربردی آن

عنوان انگلیسی
Fuzzy best-worst multi-criteria decision-making method and its applications
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
82556 2017 30 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Knowledge-Based Systems, Volume 121, 1 April 2017, Pages 23-31

ترجمه کلمات کلیدی
بهترین و بدترین روش فازی، مجموعه های فازی مقایسه مرجع فازی، نسبت سازگاری، تصمیم گیری چند معیاره،
کلمات کلیدی انگلیسی
Fuzzy best-worst method; Fuzzy sets; Fuzzy reference comparison; Consistency ratio; Multi-criteria decision-making;
پیش نمایش مقاله
پیش نمایش مقاله  فازی ترین بدترین روش تصمیم گیری چند معیاره و برنامه های کاربردی آن

چکیده انگلیسی

Considering the vagueness frequently representing in decision data due to the lack of complete information and the ambiguity arising from the qualitative judgment of decision-makers, the crisp values of criteria may be inadequate to model the real-life multi-criteria decision-making (MCDM) issues. In this paper, the latest MCDM method, namely best-worst method (BWM) was extended to the fuzzy environment. The reference comparisons for the best criterion and for the worst criterion were described by linguistic terms of decision-makers, which can be expressed in triangular fuzzy numbers. Then, the graded mean integration representation (GMIR) method was employed to calculate the weights of criteria and alternatives with respect to different criteria under fuzzy environment. According to the concept of BWM, the nonlinearly constrained optimization problem was built for determining the fuzzy weights of criteria and alternatives with respect to different criteria. The fuzzy ranking scores of alternatives can be derived from the fuzzy weights of alternatives with respect to different criteria multiplied by fuzzy weights of the corresponding criteria, and then the crisp ranking score of alternatives can be calculated by employing GMIR method for optimal alternative selection. Meanwhile, the consistency ratio was proposed for fuzzy BWM to check the reliability of fuzzy preference comparisons. Three case studies were performed to illustrate the effectiveness and feasibility of the proposed fuzzy BWM. The results indicate the proposed fuzzy BWM can not only obtain reasonable preference ranking for alternatives but also has higher comparison consistency than the BWM.