دانلود مقاله ISI انگلیسی شماره 89389
ترجمه فارسی عنوان مقاله

فرآیند سلسله مراتب تحلیلی تجزیه و تحلیل شده و توزیع شده است

عنوان انگلیسی
Sparse and distributed Analytic Hierarchy Process
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
89389 2017 10 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Automatica, Volume 85, November 2017, Pages 211-220

ترجمه کلمات کلیدی
تصمیم سازی، اطلاعات متناقض، سیستم های توزیع شده، روند سلسله مراتب تحلیلی،
کلمات کلیدی انگلیسی
Decision making; Sparse information; Distributed systems; Analytic Hierarchy Process;
پیش نمایش مقاله
پیش نمایش مقاله  فرآیند سلسله مراتب تحلیلی تجزیه و تحلیل شده و توزیع شده است

چکیده انگلیسی

The Analytic Hierarchy Process (AHP) is a de-facto standard technique in centralized decision making. Consider a situation where there is a need to rank a set of elements or alternatives, based on their value or utility, of which we just know pairwise relative information, i.e., the ratio of their values. AHP proved an effective tool to retrieve the value of each element, being able to handle also relative information affected by distortions, subjective biases and intransitivity. A downside of AHP, however, is that it requires complete information, i.e., knowledge on all pairs. In this paper, we extend the applicability of the AHP technique to the case of sparse information, i.e., when only a limited amount of information is available, and such an information corresponds to an undirected connected graph. We complement our sparse framework by developing novel criteria and metrics to evaluate the degree of consistency of the data at hand. Moreover, exploiting the proposed framework, we also provide a distributed formulation of AHP in which a set of agents, interacting through an undirected graph, are able to compute their own values (e.g., for ranking or leader election purposes), by only knowing the ratio of their values with respect to their neighbors. To this end, we develop a novel algorithm to let each agent i compute, the dominant eigenvalue and the ith component of the corresponding eigenvector of the sparse AHP matrix. We conclude the paper with a simulation campaign that numerically demonstrates the effectiveness of the proposed approach.