دانلود مقاله ISI انگلیسی شماره 110480
ترجمه فارسی عنوان مقاله

رگرسیون جزء اصلی برای مدل های خطی تعمیم یافته است

عنوان انگلیسی
Sparse principal component regression for generalized linear models
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
110480 2018 17 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computational Statistics & Data Analysis, Volume 124, August 2018, Pages 180-196

ترجمه کلمات کلیدی
نسل مختصات، کاهش ابعاد، مقررات انعطاف پذیر، انتخاب متغیر،
کلمات کلیدی انگلیسی
Coordinate descent; Dimension reduction; Sparse regularization; Variable selection;
پیش نمایش مقاله
پیش نمایش مقاله  رگرسیون جزء اصلی برای مدل های خطی تعمیم یافته است

چکیده انگلیسی

Principal component regression (PCR) is a widely used two-stage procedure: principal component analysis (PCA), followed by regression in which the selected principal components are regarded as new explanatory variables in the model. Note that PCA is based only on the explanatory variables, so the principal components are not selected using the information on the response variable. We propose a one-stage procedure for PCR in the framework of generalized linear models. The basic loss function is based on a combination of the regression loss and PCA loss. An estimate of the regression parameter is obtained as the minimizer of the basic loss function with a sparse penalty. We call the proposed method sparse principal component regression for generalized linear models (SPCR-glm). Taking the two loss function into consideration simultaneously, SPCR-glm enables us to obtain sparse principal component loadings that are related to a response variable. However, a combination of loss functions may cause a parameter identification problem, but this potential problem is avoided by virtue of the sparse penalty. Thus, the sparse penalty plays two roles in this method. We apply SPCR-glm to two real datasets, doctor visits data and mouse consomic strain data.