دانلود مقاله ISI انگلیسی شماره 110646
ترجمه فارسی عنوان مقاله

الگوریتم طبقه بندی جدید هیبرید برای پیش بینی خوشه مشتری بر اساس رگرسیون لجستیک و درخت تصمیم گیری

عنوان انگلیسی
A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
110646 2018 33 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : European Journal of Operational Research, Volume 269, Issue 2, 1 September 2018, Pages 760-772

ترجمه کلمات کلیدی
یا در بازاریابی، الگوریتم ترکیبی، پیش بینی مشتری مدل برگ لجیت، تجزیه و تحلیل پیش بینی،
کلمات کلیدی انگلیسی
OR in marketing; Hybrid algorithm; Customer churn prediction; Logit leaf model; Predictive analytics;
پیش نمایش مقاله
پیش نمایش مقاله  الگوریتم طبقه بندی جدید هیبرید برای پیش بینی خوشه مشتری بر اساس رگرسیون لجستیک و درخت تصمیم گیری

چکیده انگلیسی

Decision trees and logistic regression are two very popular algorithms in customer churn prediction with strong predictive performance and good comprehensibility. Despite these strengths, decision trees tend to have problems to handle linear relations between variables and logistic regression has difficulties with interaction effects between variables. Therefore a new hybrid algorithm, the logit leaf model (LLM), is proposed to better classify data. The idea behind the LLM is that different models constructed on segments of the data rather than on the entire dataset lead to better predictive performance while maintaining the comprehensibility from the models constructed in the leaves. The LLM consists of two stages: a segmentation phase and a prediction phase. In the first stage customer segments are identified using decision rules and in the second stage a model is created for every leaf of this tree. This new hybrid approach is benchmarked against decision trees, logistic regression, random forests and logistic model trees with regards to the predictive performance and comprehensibility. The area under the receiver operating characteristics curve (AUC) and top decile lift (TDL) are used to measure the predictive performance for which LLM scores significantly better than its building blocks logistic regression and decision trees and performs at least as well as more advanced ensemble methods random forests and logistic model trees. Comprehensibility is addressed by a case study for which we observe some key benefits using the LLM compared to using decision trees or logistic regression.