دانلود مقاله ISI انگلیسی شماره 113784
ترجمه فارسی عنوان مقاله

الگوریتم موازی برای یادگیری ساختار شبکه بیزی از مجموعه داده های بزرگ

عنوان انگلیسی
A parallel algorithm for Bayesian network structure learning from large data sets
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
113784 2017 38 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Knowledge-Based Systems, Volume 117, 1 February 2017, Pages 46-55

پیش نمایش مقاله
پیش نمایش مقاله  الگوریتم موازی برای یادگیری ساختار شبکه بیزی از مجموعه داده های بزرگ

چکیده انگلیسی

This paper considers a parallel algorithm for Bayesian network structure learning from large data sets. The parallel algorithm is a variant of the well known PC algorithm. The PC algorithm is a constraint-based algorithm consisting of five steps where the first step is to perform a set of (conditional) independence tests while the remaining four steps relate to identifying the structure of the Bayesian network using the results of the (conditional) independence tests. In this paper, we describe a new approach to parallelization of the (conditional) independence testing as experiments illustrate that this is by far the most time consuming step. The proposed parallel PC algorithm is evaluated on data sets generated at random from five different real-world Bayesian networks. The algorithm is also compared empirically with a process-based approach where each process manages a subset of the data over all the variables on the Bayesian network. The results demonstrate that significant time performance improvements are possible using both approaches.