دانلود مقاله ISI انگلیسی شماره 17747
ترجمه فارسی عنوان مقاله

تشخیص کلاهبرداری و سایر خسارات غیر فنی در یک ابزار قدرت با استفاده از ضریب پیرسون، شبکه های بیزی و درخت تصمیم

عنوان انگلیسی
Detection of frauds and other non-technical losses in a power utility using Pearson coefficient, Bayesian networks and decision trees
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
17747 2012 9 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : International Journal of Electrical Power & Energy Systems, Volume 34, Issue 1, January 2012, Pages 90–98

ترجمه کلمات کلیدی
از دست دادن غیر فنی - داده کاوی - ضریب همبستگی پیرسون - درخت تصمیم گیری - شبکه های بیزی -
کلمات کلیدی انگلیسی
Non-technical loss, Data mining, Pearson correlation coefficient, Decision tree, Bayesian network,
پیش نمایش مقاله
پیش نمایش مقاله  تشخیص کلاهبرداری و سایر خسارات غیر فنی در یک ابزار قدرت با استفاده از ضریب پیرسون، شبکه های بیزی و درخت تصمیم

For the electrical sector, minimizing non-technical losses is a very important task because it has a high impact in the company profits. Thus, this paper describes some new advances for the detection of non-technical losses in the customers of one of the most important power utilities of Spain and Latin America: Endesa Company. The study is within the framework of the MIDAS project that is being developed at the Electronic Technology Department of the University of Seville with the funding of this company. The advances presented in this article have an objective of detecting customers with anomalous drops in their consumed energy (the most-frequent symptom of a non-technical loss in a customer) by means of a windowed analysis with the use of the Pearson coefficient. On the other hand, besides Bayesian networks, decision trees have been used for detecting other types of patterns of non-technical loss. The algorithms have been tested with real customers of the database of Endesa Company. Currently, the system is in operation.