دانلود مقاله ISI انگلیسی شماره 113812
ترجمه فارسی عنوان مقاله

تشخیص همپوشانی جامعه در شبکه های وزنی از طریق یک رویکرد بیزی

عنوان انگلیسی
Overlapping community detection in weighted networks via a Bayesian approach
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
113812 2017 18 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Physica A: Statistical Mechanics and its Applications, Volume 468, 15 February 2017, Pages 790-801

ترجمه کلمات کلیدی
جامعه همپوشانی، تشخیص جامعه، شبکه های وزن رویکرد بیزی،
کلمات کلیدی انگلیسی
Overlapping community; Community detection; Weighted networks; Bayesian approach;
پیش نمایش مقاله
پیش نمایش مقاله  تشخیص همپوشانی جامعه در شبکه های وزنی از طریق یک رویکرد بیزی

چکیده انگلیسی

Complex networks as a powerful way to represent complex systems have been widely studied during the past several years. One of the most important tasks of complex network analysis is to detect communities embedded in networks. In the real world, weighted networks are very common and may contain overlapping communities where a node is allowed to belong to multiple communities. In this paper, we propose a novel Bayesian approach, called the Bayesian mixture network (BMN) model, to detect overlapping communities in weighted networks. The advantages of our method are (i) providing soft-partition solutions in weighted networks; (ii) providing soft memberships, which quantify ‘how strongly’ a node belongs to a community. Experiments on a large number of real and synthetic networks show that our model has the ability in detecting overlapping communities in weighted networks and is competitive with other state-of-the-art models at shedding light on community partition.