دانلود مقاله ISI انگلیسی شماره 113900
ترجمه فارسی عنوان مقاله

تقریبا مکانیسم تعادل بودجه با پیشنهادات اسکالر برای تخصیص یک محصول قابل تقسیم

عنوان انگلیسی
Almost budget balanced mechanisms with scalar bids for allocation of a divisible good
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
113900 2017 12 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : European Journal of Operational Research, Volume 262, Issue 3, 1 November 2017, Pages 1196-1207

ترجمه کلمات کلیدی
مزایده / مزایده، نظریه بازی، اقتصاد، برنامه ریزی خطی، برنامه محدب نامعلوم،
کلمات کلیدی انگلیسی
Auctions/bidding; Game theory; Economics; Linear programming; Uncertain convex program;
پیش نمایش مقاله
پیش نمایش مقاله  تقریبا مکانیسم تعادل بودجه با پیشنهادات اسکالر برای تخصیص یک محصول قابل تقسیم

چکیده انگلیسی

This paper is about allocation of an infinitely divisible good to several rational and strategic agents. The allocation is done by a social planner who has limited information because the agents’ valuation functions are taken to be private information known only to the respective agents. We allow only a scalar signal, called a bid, from each agent to the social planner. Yang and Hajek [Yang, S., Hajek, B., 2007. “VCG-Kelly mechanisms for allocation of divisible goods: Adapting VCG mechanisms to one-dimensional signals”, IEEE Journal on Selected Areas in Communications 25 (6), 1237–1243.] and Johari and Tsitsiklis [Johari, R., Tsitsiklis, J. N., 2009. “Efficiency of scalar-parameterized mechanisms”, Operations Research 57 (4), 823–839.] proposed a scalar strategy Vickrey–Clarke–Groves (SSVCG) mechanism with efficient Nash equilibria. We consider a setting where the social planner desires minimal budget surplus. Example situations include fair sharing of Internet resources and auctioning of certain public goods where revenue maximization is not a consideration. Under the SSVCG framework, we propose a mechanism that is efficient and comes close to budget balance by returning much of the payments back to the agents in the form of rebates. We identify a design criterion for almost budget balance, impose feasibility and voluntary participation constraints, simplify the constraints, and arrive at a convex optimization problem to identify the parameters of the rebate functions. The convex optimization problem has a linear objective function and a continuum of linear constraints. We propose a solution method that involves a finite number of constraints, and identify the number of samples sufficient for a good approximation.