دانلود مقاله ISI انگلیسی شماره 114083
ترجمه فارسی عنوان مقاله

بازخوانی مفاهیم پایه هسته کلاسیک نظریه مجموعه برای انتخاب ویژگی

عنوان انگلیسی
Redefining core preliminary concepts of classic Rough Set Theory for feature selection
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
114083 2017 13 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Engineering Applications of Artificial Intelligence, Volume 65, October 2017, Pages 375-387

ترجمه کلمات کلیدی
انتخاب ویژگی، تئوری مجموعه خشن، کاهش وابستگی، تقریبی پایین، تقریب بالا،
کلمات کلیدی انگلیسی
Feature selection; Rough Set Theory; Reduct; Dependency; Lower approximation; Upper approximation;
پیش نمایش مقاله
پیش نمایش مقاله  بازخوانی مفاهیم پایه هسته کلاسیک نظریه مجموعه برای انتخاب ویژگی

چکیده انگلیسی

Data is growing at an exponential pace. To cope with this data explosion, we need effective data processing and analysis techniques. Feature selection is selecting a subset of features from a dataset that still provides most of the useful information. Various tools are available as underlying framework for this process however, Rough Set Theory is the most prominent tool due to its analysis friendly nature. Majority of Rough Set based feature selection algorithms use positive region based dependency measure as the sole criteria to select feature subset. Calculating positive region requires calculation of lower approximation which consequently involves indiscernibility relation. In this paper, new definitions of two Rough Set preliminaries i.e. lower and upper rough set approximation are proposed. New definitions of approximations are computationally less expensive as compared to the conventional. The proposed redefinitions showed 42.78% decrease in execution time for redefined lower approximation and 43.06% decrease in case of redefined upper approximation, for five publicly available datasets while maintaining 100% accuracy. Finally based on these redefined approximations we proposed a feature selection algorithm, which when compared with state of the art techniques showed significant increase in performance without the affecting the accuracy.