دانلود مقاله ISI انگلیسی شماره 114098
ترجمه فارسی عنوان مقاله

طبقه بندی چند لایحه با استفاده از یک توافق محدوده خشن فازی

عنوان انگلیسی
Multi-label classification using a fuzzy rough neighborhood consensus
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
114098 2018 19 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Information Sciences, Volumes 433–434, April 2018, Pages 96-114

ترجمه کلمات کلیدی
تئوری مجموعه فازی فازی طبقه بندی چند لایک، نزدیکترین طبقه همسایه،
کلمات کلیدی انگلیسی
Fuzzy rough set theory; Multi-label classification; Nearest neighbor classification;
پیش نمایش مقاله
پیش نمایش مقاله  طبقه بندی چند لایحه با استفاده از یک توافق محدوده خشن فازی

چکیده انگلیسی

A multi-label dataset consists of observations associated with one or more outcomes. The traditional classification task generalizes to the prediction of several class labels simultaneously. In this paper, we propose a new nearest neighbor based multi-label method. The nearest neighbor approach remains an intuitive and effective way to solve classification problems and popular multi-label classifiers adhering to this paradigm include the MLKNN and IBLR methods. To classify an instance, our proposal derives a consensus among the labelsets of the nearest neighbors based on fuzzy rough set theory. This mathematical framework captures data uncertainty and offers a way to extract a labelset from the dataset that summarizes the information contained in the labelsets of the neighbors. In our experimental study, we compare the performance of our method with five other nearest neighbor based multi-label classifiers using five evaluation metrics commonly used in multi-label classification. Based on the results on both synthetic and real-world datasets, we are able to conclude that our method is a strong competitor to nearest neighbor based multi-label classifiers like MLKNN and IBLR.