دانلود مقاله ISI انگلیسی شماره 114102
ترجمه فارسی عنوان مقاله

گروه های شناختی خشن

عنوان انگلیسی
Rough cognitive ensembles
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
114102 2017 40 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : International Journal of Approximate Reasoning, Volume 85, June 2017, Pages 79-96

ترجمه کلمات کلیدی
فراگیری ماشین، محاسبات گرانول، نظریه مجموعه خشن، نقشه شناختی فازی، شبکه های شناختی خشن، یادگیری گروهی
کلمات کلیدی انگلیسی
Machine learning; Granular computing; Rough set theory; Fuzzy cognitive maps; Rough cognitive networks; Ensemble learning;
پیش نمایش مقاله
پیش نمایش مقاله  گروه های شناختی خشن

چکیده انگلیسی

Rough Cognitive Networks are granular classifiers stemming from the hybridization of Fuzzy Cognitive Maps and Rough Set Theory. Such cognitive neural networks attempt to quantify the impact of rough granular constructs (i.e., the positive, negative and boundary regions of a target concept) over each decision class for the problem at hand. In rough classifiers, determining the precise granularity level is crucial to compute high prediction rates. Regrettably, learning the similarity threshold parameter requires reconstructing the information granules, which may be time-consuming. In this paper, we put forth a new multiclassifier system classifier named Rough Cognitive Ensembles. The proposed ensemble employs a collection of Rough Cognitive Networks as base classifiers, each operating at a different granularity level. This allows suppressing the requirement of learning a similarity threshold. We evaluate the granular ensemble with 140 traditional classification datasets using different heterogeneous distance functions. After comparing the proposed model to 15 well-known classifiers, the experimental evidence confirms that our scheme yields very promising classification rates.