دانلود مقاله ISI انگلیسی شماره 114110
ترجمه فارسی عنوان مقاله

رویکرد کاهش ویژگی های افزایشی براساس جزئیات دانه بندی با یک دید چند دانه ای

عنوان انگلیسی
An incremental attribute reduction approach based on knowledge granularity with a multi-granulation view
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
114110 2017 20 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Information Sciences, Volume 411, October 2017, Pages 23-38

ترجمه کلمات کلیدی
سیستم تصمیم گیری، یادگیری افزایشی، جزئیات دانه نظریه مجموعه خشن، کاهش مشخصه،
کلمات کلیدی انگلیسی
Decision system; Incremental learning; Knowledge granularity; Rough set theory; Attribute reduction;
پیش نمایش مقاله
پیش نمایش مقاله  رویکرد کاهش ویژگی های افزایشی براساس جزئیات دانه بندی با یک دید چند دانه ای

چکیده انگلیسی

Dynamic updating of attribute reduction is a key factor for the success of rough set theory since many real data vary dynamically with time. Though many incremental methods for updating reduct have been proposed to deal with a dynamically-varying data set and has attracted much attention. However, it is hard to update reduct when the large-scale data vary dynamically. To overcome this deficiency, in this paper, we develop an attribute reduction algorithm with a multi-granulation view to discover reduct of large-scale data sets. Then, incremental mechanisms for knowledge granularity are introduced and two corresponding incremental approaches for updating reduct are developed when many objects are varied in a large-scale decision table with a multi-granulation view. Finally, experiments have been run on six data sets from UCI and the experimental results show that the proposed incremental algorithm with a multi-granulation view can achieve better performance for large-scale data sets.