دانلود مقاله ISI انگلیسی شماره 114161
ترجمه فارسی عنوان مقاله

مدل تصمیم گیری سه جانبه با مجموعه های خشن احتمالی برای محاسبات جریان

عنوان انگلیسی
A three-way decisions model with probabilistic rough sets for stream computing
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
114161 2017 36 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : International Journal of Approximate Reasoning, Volume 88, September 2017, Pages 1-22

ترجمه کلمات کلیدی
تصمیمات سه گانه، مجموعه های خشن احتمالی، روش یادگیری جریان محاسبات، به روز رسانی دانش،
کلمات کلیدی انگلیسی
Three-way decisions; Probabilistic rough sets; Stream computing learning method; Knowledge updating;
پیش نمایش مقاله
پیش نمایش مقاله  مدل تصمیم گیری سه جانبه با مجموعه های خشن احتمالی برای محاسبات جریان

چکیده انگلیسی

Stream computing paradigm, with the characteristics of real-time arrival and departure, has been admitted as a major computing paradigm in big data. Relevant theories are flourishing recently with the surge development of stream computing platforms such as Storm, Kafka and Spark. Rough set theory is an effective tool to extract knowledge with imperfect information, however, related discussions on synchronous immigration and emigration of objects have not been investigated. In this paper, stream computing learning method is proposed on the basis of existing incremental learning studies. This method aims at solving challenges resulted from simultaneous addition and deletion of objects. Based on novel learning method, a stream computing algorithm called single-object stream-computing-based three-way decisions (SS3WD) is developed. In this algorithm, the probabilistic rough set model is applied to approximate the dynamic variation of concepts. Three-way regions can be determined without multiple scans of existing information granular. Extensive experiments not only demonstrate better efficiency and robustness of SS3WD in the presence of objects streaming variation, but also illustrate that stream computing learning method is an effective computing strategy for big data.