دانلود مقاله ISI انگلیسی شماره 141176
ترجمه فارسی عنوان مقاله

پیش بینی وزن بدن اتوماتیک گاوهای شیری با استفاده از دید 3 بعدی

عنوان انگلیسی
Automated body weight prediction of dairy cows using 3-dimensional vision
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
141176 2018 12 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Dairy Science, Volume 101, Issue 5, May 2018, Pages 4448-4459

ترجمه کلمات کلیدی
احشام لبنیاتی، صفات مورفولوژیکی، بینش سه بعدی، اتوماسیون، عدم قطعیت،
کلمات کلیدی انگلیسی
dairy cattle; morphological trait; three-dimensional vision; automation; uncertainty;
پیش نمایش مقاله
پیش نمایش مقاله  پیش بینی وزن بدن اتوماتیک گاوهای شیری با استفاده از دید 3 بعدی

چکیده انگلیسی

The objectives of this study were to quantify the error of body weight prediction using automatically measured morphological traits in a 3-dimensional (3-D) vision system and to assess the influence of various sources of uncertainty on body weight prediction. In this case study, an image acquisition setup was created in a cow selection box equipped with a top-view 3-D camera. Morphological traits of hip height, hip width, and rump length were automatically extracted from the raw 3-D images taken of the rump area of dairy cows (n = 30). These traits combined with days in milk, age, and parity were used in multiple linear regression models to predict body weight. To find the best prediction model, an exhaustive feature selection algorithm was used to build intermediate models (n = 63). Each model was validated by leave-one-out cross-validation, giving the root mean square error and mean absolute percentage error. The model consisting of hip width (measurement variability of 0.006 m), days in milk, and parity was the best model, with the lowest errors of 41.2 kg of root mean square error and 5.2% mean absolute percentage error. Our integrated system, including the image acquisition setup, image analysis, and the best prediction model, predicted the body weights with a performance similar to that achieved using semi-automated or manual methods. Moreover, the variability of our simplified morphological trait measurement showed a negligible contribution to the uncertainty of body weight prediction. We suggest that dairy cow body weight prediction can be improved by incorporating more predictive morphological traits and by improving the prediction model structure.