دانلود مقاله ISI انگلیسی شماره 28786
ترجمه فارسی عنوان مقاله

بعد VC و فضای ضرب داخلی ناشی از شبکه های بیزی

عنوان انگلیسی
VC dimension and inner product space induced by Bayesian networks
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
28786 2009 10 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : International Journal of Approximate Reasoning, Volume 50, Issue 7, July 2009, Pages 1036–1045

ترجمه کلمات کلیدی
شبکه های بیزی - بعد - فضای ضرب داخلی - کلاس مفهوم -
کلمات کلیدی انگلیسی
Bayesian networks, VC dimension, Inner product space, Concept classes,
پیش نمایش مقاله
پیش نمایش مقاله  بعد VC و فضای ضرب داخلی ناشی از شبکه های بیزی

چکیده انگلیسی

Bayesian networks are graphical tools used to represent a high-dimensional probability distribution. They are used frequently in machine learning and many applications such as medical science. This paper studies whether the concept classes induced by a Bayesian network can be embedded into a low-dimensional inner product space. We focus on two-label classification tasks over the Boolean domain. For full Bayesian networks and almost full Bayesian networks with n variables, we show that VC dimension and the minimum dimension of the inner product space induced by them are 2n-12n-1. Also, for each Bayesian network NN we show that VCdim(N)=Edim(N)=2n-1+2iVCdim(N)=Edim(N)=2n-1+2i if the network N′N′ constructed from NN by removing XnXn satisfies either (i) N′N′ is a full Bayesian network with n-1n-1 variables, i is the number of parents of XnXn, and i<n-1i<n-1 or (ii) N′N′ is an almost full Bayesian network, the set of all parents of XnXnPAn={X1,X2,Xn3,…,Xni}PAn={X1,X2,Xn3,…,Xni} and 2⩽i<n-12⩽i<n-1. Our results in the paper are useful in evaluating the VC dimension and the minimum dimension of the inner product space of concept classes induced by other Bayesian networks.