دانلود مقاله ISI انگلیسی شماره 29018
ترجمه فارسی عنوان مقاله

یادگیری شبکه های محلی مینیماکس بهینه بیزی

عنوان انگلیسی
Learning locally minimax optimal Bayesian networks
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
29018 2010 14 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : International Journal of Approximate Reasoning, Volume 51, Issue 5, June 2010, Pages 544–557

ترجمه کلمات کلیدی
شبکه های بیزی - حداقل طول توضیحات - انتخاب مدل - پیش بینی - حداکثر احتمال نرمال - نظریه اطلاعات -
کلمات کلیدی انگلیسی
Bayesian networks, Minimum description length, Model selection, Prediction, Normalized maximum likelihood, Information theory,
پیش نمایش مقاله
پیش نمایش مقاله  یادگیری شبکه های محلی مینیماکس بهینه بیزی

چکیده انگلیسی

We consider the problem of learning Bayesian network models in a non-informative setting, where the only available information is a set of observational data, and no background knowledge is available. The problem can be divided into two different subtasks: learning the structure of the network (a set of independence relations), and learning the parameters of the model (that fix the probability distribution from the set of all distributions consistent with the chosen structure). There are not many theoretical frameworks that consistently handle both these problems together, the Bayesian framework being an exception. In this paper we propose an alternative, information-theoretic framework which sidesteps some of the technical problems facing the Bayesian approach. The framework is based on the minimax optimal normalized maximum likelihood (NML) distribution, which is motivated by the minimum description length (MDL) principle. The resulting model selection criterion is consistent, and it provides a way to construct highly predictive Bayesian network models. Our empirical tests show that the proposed method compares favorably with alternative approaches in both model selection and prediction tasks.