دانلود مقاله ISI انگلیسی شماره 29033
ترجمه فارسی عنوان مقاله

ترکیب پیشنهادات مبتنی بر محتوا و همکاری: یک روش ترکیبی مبتنی بر شبکه های بیزی

عنوان انگلیسی
Combining content-based and collaborative recommendations: A hybrid approach based on Bayesian networks ☆
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
29033 2010 15 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : International Journal of Approximate Reasoning, Volume 51, Issue 7, September 2010, Pages 785–799

ترجمه کلمات کلیدی
فیلتر کردن مبتنی بر محتوا - فیلتر همکاری - سیستم های توصیه ترکیبی - شبکه های بیزی -
کلمات کلیدی انگلیسی
Content-based filtering, Collaborative filtering, Hybrid recommender systems, Bayesian networks, MovieLens, IMDB,
پیش نمایش مقاله
پیش نمایش مقاله  ترکیب پیشنهادات مبتنی بر محتوا و همکاری: یک روش ترکیبی مبتنی بر شبکه های بیزی

چکیده انگلیسی

Recommender systems enable users to access products or articles that they would otherwise not be aware of due to the wealth of information to be found on the Internet. The two traditional recommendation techniques are content-based and collaborative filtering. While both methods have their advantages, they also have certain disadvantages, some of which can be solved by combining both techniques to improve the quality of the recommendation. The resulting system is known as a hybrid recommender system. In the context of artificial intelligence, Bayesian networks have been widely and successfully applied to problems with a high level of uncertainty. The field of recommendation represents a very interesting testing ground to put these probabilistic tools into practice. This paper therefore presents a new Bayesian network model to deal with the problem of hybrid recommendation by combining content-based and collaborative features. It has been tailored to the problem in hand and is equipped with a flexible topology and efficient mechanisms to estimate the required probability distributions so that probabilistic inference may be performed. The effectiveness of the model is demonstrated using the MovieLens and IMDB data sets.