دانلود مقاله ISI انگلیسی شماره 29129
ترجمه فارسی عنوان مقاله

معماری Shenoy-شافر گسترده برای استنتاج در شبکه های بیزی ترکیبی با شرط قطعی

عنوان انگلیسی
Extended Shenoy–Shafer architecture for inference in hybrid bayesian networks with deterministic conditionals
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
29129 2011 14 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : International Journal of Approximate Reasoning, Volume 52, Issue 6, September 2011, Pages 805–818

ترجمه کلمات کلیدی
شبکه های بیزی ترکیبی - استنتاج در شبکه های بیزی ترکیبی - معماری - شافر - تمدید معماری - شافر - توابع دلتا دیراک -
کلمات کلیدی انگلیسی
Hybrid Bayesian networks, Inference in hybrid Bayesian networks; Shenoy–Shafer architecture, Extended Shenoy–Shafer architecture, Dirac delta functions,
پیش نمایش مقاله
پیش نمایش مقاله  معماری Shenoy-شافر گسترده برای استنتاج در شبکه های بیزی ترکیبی با شرط قطعی

چکیده انگلیسی

The main goal of this paper is to describe an architecture for solving large general hybrid Bayesian networks (BNs) with deterministic conditionals for continuous variables using local computation. In the presence of deterministic conditionals for continuous variables, we have to deal with the non-existence of the joint density function for the continuous variables. We represent deterministic conditional distributions for continuous variables using Dirac delta functions. Using the properties of Dirac delta functions, we can deal with a large class of deterministic functions. The architecture we develop is an extension of the Shenoy–Shafer architecture for discrete BNs. We extend the definitions of potentials to include conditional probability density functions and deterministic conditionals for continuous variables. We keep track of the units of continuous potentials. Inference in hybrid BNs is then done in the same way as in discrete BNs but by using discrete and continuous potentials and the extended definitions of combination and marginalization. We describe several small examples to illustrate our architecture. In addition, we solve exactly an extended version of the crop problem that includes non-conditional linear Gaussian distributions and non-linear deterministic functions.