دانلود مقاله ISI انگلیسی شماره 29131
ترجمه فارسی عنوان مقاله

طبقه بندی چند بعدی با شبکه های بیزی

عنوان انگلیسی
Multi-dimensional classification with Bayesian networks
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
29131 2011 23 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : International Journal of Approximate Reasoning, Volume 52, Issue 6, September 2011, Pages 705–727

ترجمه کلمات کلیدی
خروجی های چند بعدی - طبقه شبکه های بیزی - یادگیری از داده ها - طبقه بندی چند برچسب -
کلمات کلیدی انگلیسی
Multi-dimensional outputs, Bayesian network classifiers, Learning from data, MPE, Multi-label classification,
پیش نمایش مقاله
پیش نمایش مقاله  طبقه بندی چند بعدی با شبکه های بیزی

چکیده انگلیسی

Multi-dimensional classification aims at finding a function that assigns a vector of class values to a given vector of features. In this paper, this problem is tackled by a general family of models, called multi-dimensional Bayesian network classifiers (MBCs). This probabilistic graphical model organizes class and feature variables as three different subgraphs: class subgraph, feature subgraph, and bridge (from class to features) subgraph. Under the standard 0–1 loss function, the most probable explanation (MPE) must be computed, for which we provide theoretical results in both general MBCs and in MBCs decomposable into maximal connected components. Moreover, when computing the MPE, the vector of class values is covered by following a special ordering (gray code). Under other loss functions defined in accordance with a decomposable structure, we derive theoretical results on how to minimize the expected loss. Besides these inference issues, the paper presents flexible algorithms for learning MBC structures from data based on filter, wrapper and hybrid approaches. The cardinality of the search space is also given. New performance evaluation metrics adapted from the single-class setting are introduced. Experimental results with three benchmark data sets are encouraging, and they outperform state-of-the-art algorithms for multi-label classification.