دانلود مقاله ISI انگلیسی شماره 29175
ترجمه فارسی عنوان مقاله

دو موضوع در استفاده از مخلوط چند جمله ای برای استنتاج در شبکه های بیزی هیبرید

عنوان انگلیسی
Two issues in using mixtures of polynomials for inference in hybrid Bayesian networks
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
29175 2012 20 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : International Journal of Approximate Reasoning, Volume 53, Issue 5, July 2012, Pages 847–866

ترجمه کلمات کلیدی
استنتاج در شبکه های بیزی هیبرید - مخلوط های چند جمله ای - توزیع گاوسی خطی شرطی - امتیاز چبیشف - توزیع لگنرمال شرطی -
کلمات کلیدی انگلیسی
Inference in hybrid Bayesian networks, Mixtures of polynomials, Conditional linear Gaussian distributions, Lagrange interpolating polynomials, Chebyshev points, Conditional log-normal distributions,
پیش نمایش مقاله
پیش نمایش مقاله  دو موضوع در استفاده از مخلوط چند جمله ای برای استنتاج در شبکه های بیزی هیبرید

چکیده انگلیسی

We discuss two issues in using mixtures of polynomials (MOPs) for inference in hybrid Bayesian networks. MOPs were proposed by Shenoy and West for mitigating the problem of integration in inference in hybrid Bayesian networks. First, in defining MOP for multi-dimensional functions, one requirement is that the pieces where the polynomials are defined are hypercubes. In this paper, we discuss relaxing this condition so that each piece is defined on regions called hyper-rhombuses. This relaxation means that MOPs are closed under transformations required for multi-dimensional linear deterministic conditionals, such as Z = X + Y, etc. Also, this relaxation allows us to construct MOP approximations of the probability density functions (PDFs) of the multi-dimensional conditional linear Gaussian distributions using a MOP approximation of the PDF of the univariate standard normal distribution. Second, Shenoy and West suggest using the Taylor series expansion of differentiable functions for finding MOP approximations of PDFs. In this paper, we describe a new method for finding MOP approximations based on Lagrange interpolating polynomials (LIP) with Chebyshev points. We describe how the LIP method can be used to find efficient MOP approximations of PDFs. We illustrate our methods using conditional linear Gaussian PDFs in one, two, and three dimensions, and conditional log-normal PDFs in one and two dimensions. We compare the efficiencies of the hyper-rhombus condition with the hypercube condition. Also, we compare the LIP method with the Taylor series method. Highlights ► We re-define mixtures of polynomials (MOPs) on regions called hyper-rhombuses. ► This means that MOPs are now closed for linear deterministic conditionals. ► This allows easy construction of MOPs for CLG distributions in many dimensions. ► A new method for finding MOPs using Lagrange interpolating polynomials (LIP). ► We compare hyper-rhombuses with hypercubes, and we compare LIP with Taylor series.