دانلود مقاله ISI انگلیسی شماره 29284
ترجمه فارسی عنوان مقاله

بهره برداری از روابط کارکردی علی در مدل سازی شبکه های بیزی برای مراقبت های بهداشتی شخصی

عنوان انگلیسی
Exploiting causal functional relationships in Bayesian network modelling for personalised healthcare
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
29284 2014 15 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : International Journal of Approximate Reasoning, Volume 55, Issue 1, Part 1, January 2014, Pages 59–73

ترجمه کلمات کلیدی
شبکه های بیزی زمانی - مدل های استقلال علی - پشتیبانی تصمیم گیری بالینی - اختلالات بارداری - سلامت الکترونیک - نظارت بر خانه -
کلمات کلیدی انگلیسی
Temporal Bayesian networks, Causal independence models, Clinical decision support, Pregnancy disorders, eHealth, Home monitoring,
پیش نمایش مقاله
پیش نمایش مقاله  بهره برداری از روابط کارکردی علی در مدل سازی شبکه های بیزی برای مراقبت های بهداشتی شخصی

چکیده انگلیسی

Bridging the gap between the theory of Bayesian networks and solving an actual problem is still a big challenge and this is in particular true for medical problems, where such a gap is clearly evident. We argue that Bayesian networks offer appropriate technology for the successful modelling of medical problems, including the personalisation of healthcare. Personalisation is an important aspect of remote disease management systems. It involves the forecasting of progression of a disease based on the interpretation of patient data by a disease model. A natural foundation for disease models is physiological knowledge, as such knowledge facilitates building clinically understandable models. This paper proposes ways to represent such knowledge as part of engineering principles employed in building clinically practical probabilistic models. The methodology has been used to construct a temporal Bayesian network model for preeclampsia – a pregnancy-related disorder. The model is the first of its kind and an integral part of a mobile home-monitoring system intended for use in daily pregnancy care. We conducted an evaluation study with actual patient data to obtain insight into the model’s performance and suitability. The results obtained are encouraging and show the potential of exploiting physiological knowledge for personalised decision-support systems.