دانلود مقاله ISI انگلیسی شماره 29285
ترجمه فارسی عنوان مقاله

مدل های شبکه های بیزی در تجزیه و تحلیل اتصال کارکردی مغز

عنوان انگلیسی
Bayesian network models in brain functional connectivity analysis
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
29285 2014 13 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : International Journal of Approximate Reasoning, Volume 55, Issue 1, Part 1, January 2014, Pages 23–35

ترجمه کلمات کلیدی
شبکه های بیزی - اتصال کاربردی - بازداری پاسخ - کنترل شناختی -
کلمات کلیدی انگلیسی
Bayesian networks, fMRI, Functional connectivity, Response inhibition, Cognitive control,
پیش نمایش مقاله
پیش نمایش مقاله  مدل های شبکه های بیزی در تجزیه و تحلیل اتصال کارکردی مغز

چکیده انگلیسی

Much effort has been made to better understand the complex integration of distinct parts of the human brain using functional magnetic resonance imaging (fMRI). Altered functional connectivity between brain regions is associated with many neurological and mental illnesses, such as Alzheimer and Parkinson diseases, addiction, and depression. In computational science, Bayesian networks (BN) have been used in a broad range of studies to model complex data set in the presence of uncertainty and when expert prior knowledge is needed. However, little is done to explore the use of BN in connectivity analysis of fMRI data. In this paper, we present an up-to-date literature review and methodological details of connectivity analyses using BN, while highlighting caveats in a real-world application. We present a BN model of fMRI dataset obtained from sixty healthy subjects performing the stop-signal task (SST), a paradigm widely used to investigate response inhibition. Connectivity results are validated with the extant literature including our previous studies. By exploring the link strength of the learned BN’s and correlating them to behavioral performance measures, this novel use of BN in connectivity analysis provides new insights to the functional neural pathways underlying response inhibition.