دانلود مقاله ISI انگلیسی شماره 46258
ترجمه فارسی عنوان مقاله

مقایسه ای از کسب دانش موازی در مقیاس بزرگ با استفاده از نظریه مجموعه راف بر روی سیستم های زمان اجرای کاهش نگاشت مختلف

عنوان انگلیسی
A comparison of parallel large-scale knowledge acquisition using rough set theory on different MapReduce runtime systems ☆
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
46258 2014 12 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : International Journal of Approximate Reasoning, Volume 55, Issue 3, March 2014, Pages 896–907

ترجمه کلمات کلیدی
مجموعه دقیق - کسب دانش - کاهش نگاشت - در مقیاس بزرگ
کلمات کلیدی انگلیسی
Rough sets; Knowledge acquisition; MapReduce; Large-scale
پیش نمایش مقاله
پیش نمایش مقاله  مقایسه ای از کسب دانش  موازی در مقیاس بزرگ با استفاده از نظریه مجموعه راف بر روی سیستم های زمان اجرای کاهش نگاشت مختلف

چکیده انگلیسی

Nowadays, with the volume of data growing at an unprecedented rate, large-scale data mining and knowledge discovery have become a new challenge. Rough set theory for knowledge acquisition has been successfully applied in data mining. The recently introduced MapReduce technique has received much attention from both scientific community and industry for its applicability in big data analysis. To mine knowledge from big data, we present parallel large-scale rough set based methods for knowledge acquisition using MapReduce in this paper. We implemented them on several representative MapReduce runtime systems: Hadoop, Phoenix and Twister. Performance comparisons on these runtime systems are reported in this paper. The experimental results show that (1) The computational time is mostly minimum on Twister while employing the same cores; (2) Hadoop has the best speedup for larger data sets; (3) Phoenix has the best speedup for smaller data sets. The excellent speedups also demonstrate that the proposed parallel methods can effectively process very large data on different runtime systems. Pitfalls and advantages of these runtime systems are also illustrated through our experiments, which are helpful for users to decide which runtime system should be used in their applications.