دانلود مقاله ISI انگلیسی شماره 46263
ترجمه فارسی عنوان مقاله

روش جدیدی برای گسسته سازی ویژگی های مستمر در نظریه مجموعه راف

عنوان انگلیسی
A novel approach for discretization of continuous attributes in rough set theory
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
46263 2015 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Knowledge-Based Systems, Volume 73, January 2015, Pages 324–334

ترجمه کلمات کلیدی
مجموعه راف - گسسته سازی - نظارت - چندمتغیره - کاهش
کلمات کلیدی انگلیسی
Rough sets; Discretization; Supervised; Multivariate; Cuts
پیش نمایش مقاله
پیش نمایش مقاله  روش جدیدی برای گسسته سازی ویژگی های مستمر در نظریه مجموعه راف

چکیده انگلیسی

Discretization of continuous attributes is an important task in rough sets and many discretization algorithms have been proposed. However, most of the current discretization algorithms are univariate, which may reduce the classification ability of a given decision table. To solve this problem, we propose a supervised and multivariate discretization algorithm — SMDNS in rough sets, which is derived from the traditional algorithm naive scaler (called Naive). Given a decision table DT=(U,C,D,V,f)DT=(U,C,D,V,f), since SMDNS uses both class information and the interdependence among various condition attributes in C to determine the discretization scheme, the cuts obtained by SMDNS are much less than those obtained by Naive, while the classification ability of DT remains unchanged after discretization. Experimental results show that SMDNS is efficient in terms of the classification accuracy and the number of generated cuts. In particular, our algorithm can obtain a satisfactory compromise between the number of cuts and the classification accuracy.