دانلود مقاله ISI انگلیسی شماره 46557
ترجمه فارسی عنوان مقاله

تشخیص مدیریت درآمدهای صنعت بیوتکنولوژی با استفاده از شبکه های بیزی، تجزیه و تحلیل مولفه های اصلی، شبکه عصبی انتشار بازگشت و درخت تصمیم گیری

عنوان انگلیسی
Detecting biotechnology industry's earnings management using Bayesian network, principal component analysis, back propagation neural network, and decision tree
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
46557 2015 10 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Economic Modelling, Volume 46, April 2015, Pages 1–10

ترجمه کلمات کلیدی
داده کاوی - شبکه های بیزی (BN) - شبکه عصبی پس انتشار (BPN) - تجزیه و تحلیل مولفه اصلی (PCA) - درخت تصمیم گیری - مدیریت درآمدهای تعهدی
کلمات کلیدی انگلیسی
Data mining; Bayesian network (BN); Back propagation neural network (BPN); Principal component analysis (PCA); C5.0 decision tree; Accrual earnings managementG3; C8; M4; M1
پیش نمایش مقاله
پیش نمایش مقاله  تشخیص مدیریت درآمدهای صنعت بیوتکنولوژی با استفاده از شبکه های بیزی، تجزیه و تحلیل مولفه های اصلی، شبکه عصبی انتشار بازگشت و درخت تصمیم گیری

چکیده انگلیسی

The characteristic of long value chain, high-risk, high cost of research and development are belong to high knowledge based content in the biotech medical industry, and the reliability of biotechnology industry's financial statements and the earnings management behavior conducted by the management in their accrual manipulation have been a critical issue. In recent years, some studies have used the data mining technique to detect earnings management, with which the accuracy has therefore risen. As such, this study attempts to diagnose the detecting biotechnology industry earnings management by integrating suitable computing models, we first screened the earnings management variables with the principal component analysis (PCA) and Bayesian network (BN), followed by further constructing the integrated model with the back propagation neural network (BPN) and C5.0 (decision tree) to detect if a company's earnings were seriously manipulated. The empirical results show that combining the BN screening method with C5.0 decision tree has the best performance with an accuracy rate of 98.51%. From the rules set in the final additional testing of the study, it is also found that an enterprise's prior period discretionary accruals play an important role in affecting the serious degree of accrual earnings management.