دانلود مقاله ISI انگلیسی شماره 46580
ترجمه فارسی عنوان مقاله

رگرسیون لجستیک چندگانه بلند برای تشخیص اقدام قاعده مند

عنوان انگلیسی
Multiview Hessian regularized logistic regression for action recognition
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
46580 2015 7 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Signal Processing, Volume 110, May 2015, Pages 101–107

ترجمه کلمات کلیدی
بلند - رگرسیون لجستیک - تشخیص عمل - آموزش چندگانه - آموزش منیفولد - یادگیری نیمه تحت نظارت
کلمات کلیدی انگلیسی
Hessian; Logistic regression; Action recognition; Multiview learning; Manifold learning; Semi-supervised learning
پیش نمایش مقاله
پیش نمایش مقاله  رگرسیون لجستیک چندگانه بلند برای تشخیص اقدام قاعده مند

چکیده انگلیسی

With the rapid development of social media sharing, people often need to manage the growing volume of multimedia data such as large scale video classification and annotation, especially to organize those videos containing human activities. Recently, manifold regularized semi-supervised learning (SSL), which explores the intrinsic data probability distribution and then improves the generalization ability with only a small number of labeled data, has emerged as a promising paradigm for semiautomatic video classification. In addition, human action videos often have multi-modal content and different representations. To tackle the above problems, in this paper we propose multiview Hessian regularized logistic regression (mHLR) for human action recognition. Compared with existing work, the advantages of mHLR lie in three folds: (1) mHLR combines multiple Hessian regularization, each of which obtained from a particular representation of instance, to leverage the exploring of local geometry; (2) mHLR naturally handles multi-view instances with multiple representations; (3) mHLR employs a smooth loss function and then can be effectively optimized. We carefully conduct extensive experiments on the unstructured social activity attribute (USAA) dataset and the experimental results demonstrate the effectiveness of the proposed multiview Hessian regularized logistic regression for human action recognition.