دانلود مقاله ISI انگلیسی شماره 97747
ترجمه فارسی عنوان مقاله

مطابقت حسابهای کاربری بر اساس محتوای تولید شده توسط کاربر در شبکه های اجتماعی

عنوان انگلیسی
Matching user accounts based on user generated content across social networks
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
97747 2018 12 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Future Generation Computer Systems, Volume 83, June 2018, Pages 104-115

پیش نمایش مقاله
پیش نمایش مقاله  مطابقت حسابهای کاربری بر اساس محتوای تولید شده توسط کاربر در شبکه های اجتماعی

چکیده انگلیسی

Matching user accounts can help us build better users’ profiles and benefit many applications. It has attracted much attention from both industry and academia. Most of existing works are mainly based on rich user profile attributes. However, in many cases, user profile attributes are unavailable, incomplete or unreliable, either due to the privacy settings or just because users decline to share their information. This makes the existing schemes quite fragile. Users often share their activities on different social networks. This provides an opportunity to overcome the above problem. We aim to address the problem of user identification based on User Generated Content (UGC). We first formulate the problem of user identification based on UGCs and then propose a UGC-based user identification model. A supervised machine learning based solution is presented. It has three steps: firstly, we propose several algorithms to measure the spatial similarity, temporal similarity and content similarity of two UGCs; secondly, we extract the spatial, temporal and content features to exploit these similarities; afterwards, we employ the machine learning method to match user accounts, and conduct the experiments on three ground truth datasets. The results show that the proposed method has given excellent performance with F1 values reaching 89.79%, 86.78% and 86.24% on three ground truth datasets, respectively. This work presents the possibility of matching user accounts with high accessible online data.