دانلود مقاله ISI انگلیسی شماره 100750
ترجمه فارسی عنوان مقاله

چندوجهی انتروپی چندگانه بازارهای مالی

عنوان انگلیسی
Multivariate multiscale entropy of financial markets
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
100750 2017 14 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Communications in Nonlinear Science and Numerical Simulation, Volume 52, November 2017, Pages 77-90

ترجمه کلمات کلیدی
تجزیه و تحلیل آنتروپی چند متغیره چند متغیره، رفتار پیچیدگی غیر خطی، بازار بورس جهانی، سری نوسانات چند متغیره، بازگشت چند متغیر متناوب،
کلمات کلیدی انگلیسی
Multivariate multiscale entropy analysis; Nonlinear complexity behavior; Globe stock market; Multivariate volatility series; Shuffled multivariate return;
پیش نمایش مقاله
پیش نمایش مقاله  چندوجهی انتروپی چندگانه بازارهای مالی

چکیده انگلیسی

In current process of quantifying the dynamical properties of the complex phenomena in financial market system, the multivariate financial time series are widely concerned. In this work, considering the shortcomings and limitations of univariate multiscale entropy in analyzing the multivariate time series, the multivariate multiscale sample entropy (MMSE), which can evaluate the complexity in multiple data channels over different timescales, is applied to quantify the complexity of financial markets. Its effectiveness and advantages have been detected with numerical simulations with two well-known synthetic noise signals. For the first time, the complexity of four generated trivariate return series for each stock trading hour in China stock markets is quantified thanks to the interdisciplinary application of this method. We find that the complexity of trivariate return series in each hour show a significant decreasing trend with the stock trading time progressing. Further, the shuffled multivariate return series and the absolute multivariate return series are also analyzed. As another new attempt, quantifying the complexity of global stock markets (Asia, Europe and America) is carried out by analyzing the multivariate returns from them. Finally we utilize the multivariate multiscale entropy to assess the relative complexity of normalized multivariate return volatility series with different degrees.