دانلود مقاله ISI انگلیسی شماره 106322
ترجمه فارسی عنوان مقاله

روش های یادگیری تقویتی برای تعیین خط مشی های سفارش سیستم های موجودی فاسد شده

عنوان انگلیسی
Reinforcement learning approaches for specifying ordering policies of perishable inventory systems
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
106322 2018 29 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 91, January 2018, Pages 150-158

پیش نمایش مقاله
پیش نمایش مقاله  روش های یادگیری تقویتی برای تعیین خط مشی های سفارش سیستم های موجودی فاسد شده

چکیده انگلیسی

In this study, we deal with the inventory management system of perishable products under the random demand and deterministic lead time in order to minimize the total cost of a retailer. We investigate two different ordering policies to emphasize the importance of the age information in the perishable inventory systems using Reinforcement Learning (RL). Stock-based policy replenishes stocks according to the stock quantities, and Age-based policy considers both inventory level and the age of the items in stock. The problem considered in this article has been modeled using Reinforcement Learning and the policies are optimized using Q-learning and Sarsa algorithms. The performance of the proposed policies compared with similar policies from the literature. The experiments demonstrate that the ordering policy which takes into account the age information appears to be an acceptable policy and learning with RL provides better results when demand has high variance and products has short lifetimes.