دانلود مقاله ISI انگلیسی شماره 113755
ترجمه فارسی عنوان مقاله

یادگیری کارآمد از شبکه های محدود بی نهایت از مجموعه داده های کامل و ناقص

عنوان انگلیسی
Efficient learning of bounded-treewidth Bayesian networks from complete and incomplete data sets
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
113755 2018 15 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : International Journal of Approximate Reasoning, Volume 95, April 2018, Pages 152-166

پیش نمایش مقاله
پیش نمایش مقاله  یادگیری کارآمد از شبکه های محدود بی نهایت از مجموعه داده های کامل و ناقص

چکیده انگلیسی

Learning a Bayesian networks with bounded treewidth is important for reducing the complexity of the inferences. We present a novel anytime algorithm (k-MAX) method for this task, which scales up to thousands of variables. Through extensive experiments we show that it consistently yields higher-scoring structures than its competitors on complete data sets. We then consider the problem of structure learning from incomplete data sets. This can be addressed by structural EM, which however is computationally very demanding. We thus adopt the novel k-MAX algorithm in the maximization step of structural EM, obtaining an efficient computation of the expected sufficient statistics. We test the resulting structural EM method on the task of imputing missing data, comparing it against the state-of-the-art approach based on random forests. Our approach achieves the same imputation accuracy of the competitors, but in about one tenth of the time. Furthermore we show that it has worst-case complexity linear in the input size, and that it is easily parallelizable.