دانلود مقاله ISI انگلیسی شماره 113799
ترجمه فارسی عنوان مقاله

یادگیری کارآمد شبکه های بیزی با عرض محدود

عنوان انگلیسی
Efficient learning of Bayesian networks with bounded tree-width
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
113799 2017 16 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : International Journal of Approximate Reasoning, Volume 80, January 2017, Pages 412-427

ترجمه کلمات کلیدی
شبکه بیزی، ساختار یادگیری، محدود درخت عرض، تپه نوردی،
کلمات کلیدی انگلیسی
Bayesian network; Structure learning; Bounded tree-width; Hill climbing;
پیش نمایش مقاله
پیش نمایش مقاله  یادگیری کارآمد شبکه های بیزی با عرض محدود

چکیده انگلیسی

Learning Bayesian networks with bounded tree-width has attracted much attention recently, because low tree-width allows exact inference to be performed efficiently. Some existing methods [24,29] tackle the problem by using k-trees to learn the optimal Bayesian network with tree-width up to k. Finding the best k-tree, however, is computationally intractable. In this paper, we propose a sampling method to efficiently find representative k-trees by introducing an informative score function to characterize the quality of a k-tree. To further improve the quality of the k-trees, we propose a probabilistic hill climbing approach that locally refines the sampled k-trees. The proposed algorithm can efficiently learn a quality Bayesian network with tree-width at most k. Experimental results demonstrate that our approach is more computationally efficient than the exact methods with comparable accuracy, and outperforms most existing approximate methods.