دانلود مقاله ISI انگلیسی شماره 114131
ترجمه فارسی عنوان مقاله

تصمیم گیری های مبتنی بر مجموعه ای فازی دوگانه کمی خشن: یک روش عملی منطقی

عنوان انگلیسی
Double-quantitative rough fuzzy set based decisions: A logical operations method
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
114131 2017 18 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Information Sciences, Volume 378, 1 February 2017, Pages 264-281

ترجمه کلمات کلیدی
تصمیم گیری نظری مجموعه خشن، اندازه گیری دوگانه، مفهوم فازی، مجموعه خشن درجه بندی شده، پیوند منطقی و اختلال،
کلمات کلیدی انگلیسی
Decision-theoretic rough set; Double quantification; Fuzzy concept; Graded rough set; Logical conjunction and disjunction;
پیش نمایش مقاله
پیش نمایش مقاله  تصمیم گیری های مبتنی بر مجموعه ای فازی دوگانه کمی خشن: یک روش عملی منطقی

چکیده انگلیسی

As two important expanded quantification rough set models, the probabilistic rough set (PRS) model and the graded rough set (GRS) model are used to measure relative quantitative information and absolute quantitative information between the equivalence classes and a basic concept, respectively. The decision-theoretic rough set (DTRS) model is a special case of PRS model which mainly utilizes the conditional probability to express relative quantification. Since the fuzzy concept is more general than classical concept in real life, how to make decision for a fuzzy concept using relative and absolute quantitative information is becoming a hot topic. In this paper, a couple of double-quantitative decision-theoretic rough fuzzy set (Dq-DTRFS) models based on logical conjunction and logical disjunction operation are proposed. Furthermore, we discuss decision rules and the inner relationship between these two models. Then, an experiment in the medical diagnosis is studied to support the theories. Finally, to apply our methods to solve a pattern recognition problem in big data, experiments on data sets downloaded from UCI are conducted to test the proposed models. In addition, we also offer a comparative analysis using two non-rough set based methods. From the results obtained, one finds that the proposed method is efficient for dealing with practical issues.