دانلود مقاله ISI انگلیسی شماره 122251
ترجمه فارسی عنوان مقاله

یادگیری گویای بیسیونی برای حذف نویز تکان دهنده از سیگنال های گفتاری

عنوان انگلیسی
Variational Bayesian learning for removal of sparse impulsive noise from speech signals
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
122251 2018 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Digital Signal Processing, Volume 73, February 2018, Pages 106-116

ترجمه کلمات کلیدی
تقویت گفتار، سر و صدای تکان دهنده، بیسایان متنوع کلمن صاف بی نظیر افزودنی،
کلمات کلیدی انگلیسی
Speech enhancement; Sparse impulsive noise; Variational Bayesian; Kalman smoother; Additive outlier;
پیش نمایش مقاله
پیش نمایش مقاله  یادگیری گویای بیسیونی برای حذف نویز تکان دهنده از سیگنال های گفتاری

چکیده انگلیسی

In this paper, a new variational Bayesian (VB) learning algorithm is proposed to remove sparse impulsive noise from speech signals. The clean signal is modeled using an autoregressive (AR) model on frame basis. The contaminated signal is modeled as the sum of the AR model of the clean speech signal, a sparse noise term and a dense Gaussian noise term. The sparse noise and the dense Gaussian noise terms model the large additive values caused by the impulsive noise and the small additive values or Gaussian noise, respectively. A hierarchical Bayesian model is constructed for the contaminated signal and a VB framework is used to estimate the parameters of the model. The AR model parameter estimation, the speech signal recovery and the sparse impulsive noise removal are carried out simultaneously. The proposed algorithm starts from random initial values and it does not require training and a threshold as compared to other methods. Experiments are performed using a standard speech database and impulsive noise generated from a probabilistic impulsive noise model and real impulsive noise. The comparison of obtained results with other methods demonstrates the performance of the proposed method.