دانلود مقاله ISI انگلیسی شماره 133603
ترجمه فارسی عنوان مقاله

احساس، سن و طبقه بندی جنسیتی در کودکان و نوجوانان و ماشین آلات سخنرانی کودکان

عنوان انگلیسی
Emotion, age, and gender classification in children’s speech by humans and machines
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
133603 2017 16 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computer Speech & Language, Volume 46, November 2017, Pages 268-283

ترجمه کلمات کلیدی
گفتار احساسی کودک تجربیات درک، تجزیه و تحلیل اسپکتروگرافی، حالت های احساسی، شناسایی عصر، تشخیص جنسیت، زبانشناسی کامپیوتری،
کلمات کلیدی انگلیسی
Emotional child speech; Perception experiments; Spectrographic analysis; Emotional states; Age recognition; Gender recognition; Computational paralinguistics;
پیش نمایش مقاله
پیش نمایش مقاله  احساس، سن و طبقه بندی جنسیتی در کودکان و نوجوانان و ماشین آلات سخنرانی کودکان

چکیده انگلیسی

In this article, we present the first child emotional speech corpus in Russian, called “EmoChildRu”, collected from 3 to 7 years old children. The base corpus includes over 20 K recordings (approx. 30 h), collected from 120 children. Audio recordings are carried out in three controlled settings by creating different emotional states for children: playing with a standard set of toys; repetition of words from a toy-parrot in a game store setting; watching a cartoon and retelling of the story, respectively. This corpus is designed to study the reflection of the emotional state in the characteristics of voice and speech and for studies of the formation of emotional states in ontogenesis. A portion of the corpus is annotated for three emotional states (comfort, discomfort, neutral). Additional data include the results of the adult listeners’ analysis of child speech, questionnaires, as well as annotation for gender and age in months. We also provide several baselines, comparing human and machine estimation on this corpus for prediction of age, gender and comfort state. While in age estimation, the acoustics-based automatic systems show higher performance, they do not reach human perception levels in comfort state and gender classification. The comparative results indicate the importance and necessity of developing further linguistic models for discrimination.